
Introduction to Kramers Equation

Steven Jenks
Drexel University

Statistical Mechanics II

December 11, 2006



1 Introduction

Physicists have deserted the idea of determinism as a model for reality. Our
most precise laws are quantum mechanical in nature, which limits our ability
to predict (with precision) even the simplest systems of interest. Therefore
probabilistic, stochastic, models are developed and refined in order to properly
understand natural phenomena.

Kramers equation is a special form of the Fokker-Planck equation used to de-
scribe the Browian motion of a potential. The probability density is described
in terms of p(x, v, t) through a partial differential equation. In this short paper,
Kramers equation is derived from the stochastic differential equations, general
solutions to the partial differential equation are discussed and applied to a sim-
ple system that can be solved exactly (harmonically bound particle in a random
force).

2 Derivation of Kramers equation

All continuous, Markov, stochastic normal processes have two alternative but
mathematical equivalent descriptions. There is one that is a governed by random
variables (stochastic differential equations) and another that is in terms of the
probability density p(x, v, t) and its partial differential equation. Remembering
that each two variable process is governed by the two stochastic differential
equations;

dV = a(X, V )dt +
√

q(X, V )dtNt(0, 1) (1)
dX = V dt (2)

with a(X, V ) and q(X, V ) being very general to accomadate many cases. Please
note the notation used for the stochastic force,

√
q(X, V )dtNt(0, 1), Nt(0, 1) be-

ing a normal distribution with a mean of 0 and variance of 1. This seems a bit
odd but is very much equal to the normal notation of the stochastic force, Γ(t).
The reader is encouraged to investigate this notation from reference [1], as it
is not explained in this paper. Now, the key to converting one description to
another is equation (3) below.∫ ∫

f(x, v)
∂p

∂t
dxdv =

〈
df(X, V )

dt

〉
, (3)

f(X, V ) is a smooth function of X and V and

df =
∂f

∂X
dX +

∂f

∂V
dV +

∂2f

∂V 2

(dV )2

2

=
∂f

∂X
V dt +

∂f

∂V

[
adt +

√
qdtNt(0, 1)

]
+

∂2f

∂V 2

qdt

2
,

1



and the terms smaller then dt have been dropped. Substituting this result into
equation (3) yields∫ ∫

f
∂p

∂t
dxdv =

〈
V

∂f

∂X
+ a

∂f

∂V
+

q

2
∂2f

∂V 2

〉
∫ ∫

f
∂p

∂t
dxdv =

∫ ∫ [
v
∂f

∂x
+ a

∂f

∂v
+

q

2
∂2f

∂v2

]
pdxdv

integrating by parts the right hand side and dropping the surface terms;∫ ∫
f(x, v)

∂p

∂t
dxdv =

∫ ∫
f(x, v)

[
−v

∂p

∂x
− ∂

∂v
(ap) +

1
2

∂2

∂v2
(qp)

]
dxdv

Looking at both sides of the equation yield a result of

∂p

∂t
+ v

∂p

∂x
= − ∂

∂v
(ap) +

1
2

∂2

∂v2
(qp) (4)

With equation (4) being a general form of kramers equation. For example, the
harmonically bound potential which is solved in this paper has a = −γV −ω2x
and q = 2ktγ

m .

∂p

∂t
+ v

∂p

∂x
=

∂

∂v

[
(ω2x + γv)p

]
+

ktγ

m

∂2p

∂v2
(5)

3 General Solution of Kramers Equation

Some of the steps that are used here to develop a general solution of kramers
equation require additional knowledge that go beyond the scope of this paper. It
is not the purpose of this paper to go through all the rigorous mathematical steps
that are needed to develop the general solution but just present the solution in
a practical manner that can be applied to a simple application.

3.1 Preliminaries-Ornstein Uhlenbeck Process

A Langevin equation of this type;

ζ̇i +
N∑

j=1

γijζj = Γi(t); i = 1, . . . , N

with the δ-correlated Gaussian Langevin forces

〈Γi(t)〉 = 0〈
Γi(t)Γj(t́)

〉
= qijδ(t− t́)

qij = qji
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describes the Ornstein-Uhlenbeck process, equations (1) and (2) are examples of
this process. The main features are that the differential equations are linear and
the strength of the noise doesn’t depend on ζ. We now look for the homogeneous
solution of the differential equations with the initial conditions satisfying ζi(0) =
xi. Using the initial conditions, the solution can be expressed as

ζh
i (t) = Gij(t)xj (6)

where the Greens function Gij(t) must satisfy the initial condition Gij(0) = δij .
With this knowledge Greens function must also satisfy the differential equation

Ġij + γikGjk = 0

and the general solution to being

G(t) = exp(−γt) (7)

For the purposes of this paper the inhomogeneous solution is just stated below

ζinh
i (t) =

t∫
0

Gij(t́)Γj(t− t́)dt́

With the general solution of ζi(t)

ζi(t) = ζh
i (t) + ζinh

i (t) = Gij(t)xj +

t∫
0

Gij(t́)Γj(t− t́)dt́ (8)

3.1.1 Calculation of First Moment and Variance

From equation (8) and the properties of the Langevin force, it is easily seen that
the first moment is

Mi(t) = 〈ζi(t)〉 = Gij(t)xj (9)

and the variance is also easily obtained

σij(t) = σji(t) = 〈[ζi(t)− 〈ζi(t)〉] [ζj(t)− 〈ζj(t)〉]〉

=

t∫
0

t∫
0

Gik(t́1)Gjs(t́2)qksδ(t́1 − t́2)dt́1dt́2

=

t∫
0

Gik(t́)Gjs(t́)qksdt́ (10)

It can also be shown that

˙σij = −γikσkj − γjkσki + qij (11)

by differentiating σij and using the differential equation Ġij + γikGjk = 0
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3.2 Solution to Kramers Equation

We are now ready to solve the general Fokker-Planck equation for several vari-
ables, hence kramers equation. The transition probability, P ({x}, t́ | ´{x}, t́), is
given in the partial differential equation

∂P

∂t
= γij

∂

∂xi
(xjP ) + Dij

∂2P

∂xi∂xj
(12)

where the matrices γij , Dij = Dji are constant and are the drift and diffusion
coefficient respectively. One can see that equations (4) and (5) are of this form.
Also, P must satisfy the initial condition P ({x}, t́ | ´{x}, t́) = δ({x}− ´{x}). If P
is expressed by its fourier transform with respect to the variables {x} then the
first order differential equation

∂P̃

∂t
= −γijki

∂P̃

∂kj
−DijkikjP̃ (13)

is obtained and the initial condition is now

P̃ ({x}, t́ | ´{x}, t́) = exp(−ikj x́j)

There is more then one way to solve this differential equation, however here the
solution is acquired through the ansatz

P̃ ({x}, t́ | ´{x}, t́) = exp

[
−ikiMi(t− t́)− 1

2
kikjσij(t− t́)

]
(14)

and inserting this solution back into equation (13) yields the following

(−ikiṀi −
1
2
kikj ˙σij − γijkiiMj − γijkiσjlkl + Dijkikj)P̃ = 0 (15)

and noting that the following two differential equations are a consequence of
(15)

Ṁi = −γijMj (16)
˙σij = −γilσlj − γjlσli + 2Dij (17)

Using the initial condition of P̃ ({x}, t́ | ´{x}, t́) gives the initial conditions to
equations (16) and (17).

Mi(0) = x́i

σij(0) = 0 (18)

The solutions of (16) and (17) can be solved given the initial conditions above

Mi(t− t́) = Gij(t− t́)x́j (19)

σij(t) =

t∫
0

Gik(t́)Gjs(t́)2Dksdt́ (20)

4



These two results should look familiar, as the Greens function Gij is the same
one as in section 3.1 satisfying the initial condition Gij(0) = δij . Now Getting
back to finding the solution of equation (12), to do this we then insert the
solution P̃ back into its fourier transform and integrates to find,

P̃ ({x}, t́ | ´{x}, t́) = (2π)−
N
2

[
Det σ(t− t́)

]− 1
2

× exp{−1
2

[
σ−1(t− t́)

]
ij

[
xi −Gik(t− t́)x́k

]
×

[
xj −Gjl(t− t́)x́l

]
} (21)

3.2.1 Expansion into a Biorthogonal Set

Now we are going to assume that a complete biorthogonal set of the matrix γ
exists.

γiju
(α)
j = λαu

(α)
i ; v

(α)
i γij = λαv

(α)
j (22)

with the orthonormality and completeness relation∑
α

v
(α)
i u

(α)
j = δij ;

∑
i

u
(α)
i v

(β)
i = δαβ (23)

Such a complete biorthogonal set exists if the N eigenvalues aren’t degenerate.
In order to avoid degenerate eigenvalues the matrix γij may be changed to εγ̂ij .
In the final result, the limit ε → 0. The decomposition of the matrix γ is

γij =
∑
α

λαu
(α)
i v

(α)
j (24)

and we can find Greens function Gij(t)

Gij(t) = [exp(−γt)]ij =
∑
α

e−λαtu
(α)
i v

(α)
j (25)

and σij(t) by inserting Gij(t) into equation (20), then perform the integration
to find

σij(t) = 2
∑
α,β

1− e−(λα+λβ)t

λα + λβ
D(α,β)u

(α)
i v

(α)
j

D(α,β) = v
(α)
k Dklv

(β)
l (26)

4 Application-Harmonically Bound Particle

Kramers equation for the harmonically bound particle is

∂p

∂t
+ v

∂p

∂x
=

∂

∂v

[
(ω2x + γv)p

]
+

ktγ

m

∂2p

∂v2
(27)
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and the two matrices γ, D can be found from equation 12

γ =
(

0 −1
ω2 γ

)
; D =

(
0 0
0 γv2

th

)
(28)

with vth =
√

kt
m . Now we can get the transition probability P (x, v, t | x́, v́, 0)

from equation (21);

P (x, v, t | x́, v́, 0) = (2π)−1(Det σ)−
1
2 exp{−1

2
[
σ−1(t)

]
xx

[x− x(t)]2

−
[
σ−1(t)

]
xv

[x− x(t)] [v − v(t)]− 1
2

[
σ−1(t)

]
vv

[v − v(t)]2} (29)

and the expectation values are found by using equation (19)

〈x〉 = x(t) = [exp(−γt)]xx x́ + [exp(−γt)]xv v́

〈v〉 = v(t) = [exp(−γt)]vx x́ + [exp(−γt)]vv v́ (30)

The eigenvalues of the γ are now found to be

λ1,2 =
1
2
(γ ±

√
γ2 − 4ω2) (31)

and noticing that;

λ1 + λ2 = γ, λ1λ2 = ω2 (32)

By using equations (22-24) we find the column and row matrices,

u(1) =
(
−1
λ1

)
, u(2) =

(
1
−λ2

)
(33)

v(1) =
(

λ2
λ1−λ2

1
λ1−λ2

)
, v(2) =

(
λ1

λ1−λ2

1
λ1−λ2

)
(34)

and using equation (25) we get

Gxx(t) = [exp(−γt)]xx =
λ1e

−λ2t − λ2e
−λ1t

λ1 − λ2

Gxv(t) = [exp(−γt)]xv =
e−λ2t − e−λ1t

λ1 − λ2

Gvx(t) = [exp(−γt)]vx = ω2 e−λ1t − e−λ2t

λ1 − λ2

Gvv(t) = [exp(−γt)]vv =
λ1e

−λ1t − λ2e
−λ2t

λ1 − λ2
(35)

the average values as one can see are

〈x〉 =
λ1e

−λ2t − λ2e
−λ1t

λ1 − λ2
x́ +

e−λ2t − e−λ1t

λ1 − λ2
v́

〈v〉 = ω2 e−λ1t − e−λ2t

λ1 − λ2
x́ +

λ1e
−λ1t − λ2e

−λ2t

λ1 − λ2
v́
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Using equation (26) and finding that D(α,β) = γv2
th

(λ1−λ2)2
, gives the σ matrix

σxx(t) =
γv2

th

(λ1 − λ2)2

[
λ1 + λ2
λ1λ2

+
4

λ1 + λ2
(e−(λ1+λ2)t − 1)− 1

λ1
e−2λ1t − 1

λ2
e−2λ2t

]
σxv(t) =

γv2
th

(λ1 − λ2)2
(e−λ1t + e−λ2t)2 (36)

σvv(t) =
γv2

th

(λ1 − λ2)2

[
λ1 + λ2 +

4λ1λ2

λ1 + λ2
(e−(λ1+λ2)t − 1)− λ1e

−2λ1t − λ2e
−2λ2t

]

4.1 High Friction Limit

Let us now consider what happens in the high friction limit. First lets take a
look at the eigenvalues and in this case they can be expanded as;

λ1,2 =
1
2
(γ ±

√
γ2 − 4ω2 ≈ 1

2
γ ± 1

2
γ(1− 2ω2

γ2
) (37)

λ1 ≈ γ, λ2 ≈
ω2

γ
(38)

neglecting the terms 1
γ2 . Consider now the average values for x and v, we see

that both expressions contain exponentials with −λ1t and −λ2t in the exponent.
For large γ this implies that one decreases exponentially with the other one
decreasing slowly. Again removing the terms 1

λ2 and a little algebra gives you

〈x(t)〉 ≈ x́e−
ω2t

γ (39)

〈v(t)〉 ≈ −ω2

γ
x́e−

ω2t
γ (40)

This is a very interesting result because the loss of an initial condition. This
all points in the direction that in the high friction limit, the partial differential
equation can be reduced to only include the position coordinate. This is exactly
the case and although not derived in this paper, one will get the Smoluchowski
differential equation.

4.2 Stationary Solution

For ω2 > γ2/4 the real parts of the eigenvaluesλ1,2 are greater then zero and for
γ2/4 ≥ ω2 the eigenvalues are greater then zero. Hence, equation (35) vanishes
and for the σ matix;

σxx(∞) =
v2

th

ω2

σxv(∞) = 0 (41)
σvv(∞) = v2

th
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and the probability distribution P (x, v,∞ | x́, v́, 0) is derived from equation
(21);

P (x, v,∞ | x́, v́, 0) =
ω

2πv2
th

exp

(
−1

2
v2

v2
th

− ω2x2

2v2
th

)
=

mω

2πkT
exp

(
− E

kT

)
(42)

4.3 Free Brownian Motion

For free Brownian motion without an external force,ω2 → 0. The eigenvalues
then go to λ1 → γ, λ2 → 0 and the expressions simplify to

〈x(t)〉 = x́ +
(1− e−γt)v́

γ

〈v(t)〉 = e−γtv́

σxx(t) = v2
th

(2γt− 3 + 4e−γt − e−2γt)
γ2

σxv(t) = v2
th

(1− e−γt)2

γ

σvv(t) = v2
th(1− e−2γt)
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